MONTER AVEC LA SAMBA
(Selle de Dressage MACEL)
« The last saddle you will ever need » 

La flexion latérale se produit entre les vertèbres T16 et T9. Les rotations transversales sont situées entre T14 et T9. Fondamentalement, la flexion latérale et les rotations axiales se produisent entre les cuisses du cavalier.
Avec un rétrécissement de l’arçon sous le haut des cuisses et une conception astucieuse des matelassures en contact avec le dos du cheval, le Macel Samba permet un contact précis et étudié entre les cuisses du pilote et sa monture. C’est ce qui a attiré Jean-Luc CORNILLE lorsque la Samba a été conçue en 1968.
En effet, les écoles classiques enseignent la descente des cuisses vers la verticale, mais pour ce faire, il faut lutter contre la selle car la plupart encouragent plutôt à s’asseoir sur les fesses et à serrer la partie inférieure des cuisses.

Quand, succombant à la mode, certains selliers commencèrent à réaliser d’énormes taquets sur leurs selles, des sièges d’une profondeur abyssale ainsi qu’un rembourrage épais, Patrick Fesquet (le gérant de MACEL), conserva le design pertinent de la Samba, en y ajoutant une superbe qualité de cuir et un savoir-faire artisanal et prestigieux.
La flexion latérale et la rotation de la colonne thoracique du cheval se produisent entre les cuisses du cavalier et sont donc stimulées par celles-ci. Correctement installé et équilibré sur son siège, le cavalier peut facilement diriger la colonne thoracique du cheval. Cependant, l’équitation résulte plus du physique que de la posture.

Les selles au siège profond poussent le cavalier vers l’avant et le forcent à s’appuyer encore plus sur son fessier. L’angle du bassin change alors et pousse le cavalier à trouver la stabilité en serrant la partie inférieure des cuisses, ce qui déclenche une série de réactions dommageables pour le cheval.
D’énormes taquets et une bonne garniture de selle vers l’avant, sont théoriquement conçues pour assurer une position de jambe appropriée, néanmoins elles aggravent le problème de poussée des genoux et des cuisses contre les matelassures.

Certaines études et recherches ont montré que les chevaux pouvaient réagir à des pressions tellement légères que l’humain ne les sentirait même pas. Ce qui soulève donc la possibilité que l’instabilité humaine sur la selle puisse entraîner la livraison, par inadvertance, de signaux tactiles non pertinents au cheval et, par conséquent, l’échec à enseigner au cheval quel signal est significatif.
De la stabilité du siège vient la capacité à maintenir un contact souple avec le mollet sur le flanc du cheval. Le dialogue avec les jambes peut alors se limiter à des nuances subtiles de tonus musculaire. Sans équilibre neutre sur la structure du siège et une étreinte légère et délicate des cuisses, l’équitation subtile et raffinée ne peut être atteinte.

Une des approches de Science of Motion est la réhabilitation par le mouvement.
Les thérapies que nous entreprenons se concentrent sur l’identification et la correction du déséquilibre musculaire et du dysfonctionnement au niveau de l’épine dorsale. Le taux de réussite est assez élevé. Les quelques cas qui n’ont pas fonctionné étaient dû à la résistance, consciente ou subconsciente, du cavalier qui évoluait sur un siège traditionnel plaçant son poids sur les fesses, obstacle à une montée et conduite efficace. S’il est assez talentueux, le cheval parviendra à réussir l’exercice mais ceci entraînera certains dysfonctionnements. Ces dysfonctionnements créent des dommages pathologiques que la rééducation aura du mal à réparer. C’est à ce moment-là que le cavalier et le cheval auront besoin d’un bon siège et d’une selle permettant une bonne assise. La science de la perception du mouvement d’une bonne selle ne passera pas par une selle qui fixe le cheval immobile, mais une selle qui le met en mouvement.

 

Pour retrouver l’article dans son intégralité, ainsi que les schémas l’accompagnant, rendez-vous sur le site de Science of Motion :
– http://www.scienceofmotion.com/riding_the_samba.html
– http://www.scienceofmotion.com/mastering_stability.html

Riding the Samba
(Macel Dressage Saddle)

“The last saddle you will ever need”.
Jean Luc Cornille

 

Lateral bending occurs between T16 and T9. Transversal rotations are situated between T14 and T9. Basically, lateral bending and axial rotations occur between the rider’s upper thighs. With the tree narrowing under the rider’ upper thighs and the clever design of the pads in contact with the horse back, the Macel Samba allows precise and study contact of the rider’s upper thighs. This is what attracted me when the Samba was first designed in 1968. Classical schools teach descending the thighs toward the vertical, but to do so, one has to fight the saddle as most saddles encourage instead sitting on the gluts and squeezing the lower thighs.

When, succumbing to fashion, saddles started to swell enormous knee pads, abysmal deep seat and thick paddings, Macel’s Patrick Fesquet preserved the pertinent design of the Samba, adding superb leather quality and craftsmanship. Lateral bending and associated rotation of the horse thoracic spine occurs between the rider’s upper thighs and therefore are stimulated by the rider’s upper thighs. Properly balanced over the seat bones and therefore the ASIS (Anterior Superior Iliac Spine), slightly advanced between the forearms, the rider can gently hug the horse’s thoracic dorsal spines and surrounding muscles between the upper thighs, The upper thighs is the highest part of the thighs, from the pelvis one third down to the thighs. Facing right or facing left, the rider can easily bend the horse’s thoracic spine. However, riding is about physics and not posture. Bending the horse’s thoracic spine between the upper thighs is the only way to really bend the horse’s thoracic vertebrae, but it is a dynamic concept.

First, the rider needs to be in neutral balance over the seat bones, which means, the body weight is not acting back to front or front to back. The seat bones are the lower part of the pelvis and are just two points. The stability is ensured by the gluts situated behind and the muscles of the upper thighs, situated ahead. The rider is then constantly over the gluts, the seat bones and the upper thighs. Stability over the seat bone is then ensured by adjustments between the gluts and the upper thigh. Deep seat saddles are pushing the rider’s seat bones forward encouraging the rider in having more weight on the gluts. The pelvis angle changes, lifting the thighs. The rider tries then finding stability squeezing the lower thighs initiating a series of damaging reactions. Enormous knee pads, and in some saddles pads in front of the rider’s thighs, are theoretically designed to ensure proper legs position. They are in fact aggravating the problem as knees and upper thighs are pushing up against the pads.

Squeezing the lower thighs creates too much tension on the upper thighs as well as abdominal muscles. Harmonic tensegrity, verses relaxation, force anatomy verses functional anatomy, are expressions upgrading old language to actual knowledge. It is all about forces, energy, and the real harmony between the rider and the horse is not the amplitude of movement, but instead about harmonic tensegrity. Excessive tension of the upper thighs and abdominal muscles is not only going to alter the subtle motion of the rider’s vertebral column, but also the harmony between the horse and the rider tensegrity. Gross anatomy and gross equitation still promote an equitation of gestures to sell enormous knee pads, but the horse natural subtlety is much more refined than these gross theories and the horse does have to protect himself from excessive tension as well as excessive motion.

Squeezing the lower thighs also induces squeezing the knees which places the rider’s lower legs, the calves, away from the horse’s belly. The negative effects are considerable. In her 2002 study on humans and animals “Umwelt” C. A. Saslow discovered a very high tactile perception in the area of the horse’s body in contact with the rider’s legs. “Using stimuli developed for gauging human tactile sensitivity, we were surprised to find that horse sensitivity on the parts of the body which would be in contact with the rider’s legs is greater than what has been found for the adult human calf or even the more sensitive human fingertip. Horses can react to pressures that are too light for the human to feel. This raise the possibility that human instability on the saddle result in inadvertent delivery of irrelevant tactile signals to the horse and consequent failure in teaching the horse which signal is meaningful.” As squeezing the lower thighs moves the rider calves away from the horse flanks, riders ensure legs contact squeezing the calves, delivering tactile signals above the horse’s comfort zone. Even worse are the moving legs touching or even hitting the horse flanks repetitively. Saslow wrote later in her study, “Horses deemed insensitive to the leg, (dead-sided) may simply never had the chance to respond to consistent, light, meaningful signals.”

The stability of the rider’s seat depends on the ability of sustaining a study and light contact of the upper thighs, a gentle hug. From seat stability come the capacity of sustaining soft contact with the calf on the horse flank. The dialogue with the legs can then be limited to subtle nuances in muscle tone. Without neutral balance over the seat bones and gentle hug of the upper thighs, subtle equitation cannot be reached.

One branch of the science of motion approach is rehabilitation through motion. Our approach to kissing spine is that we regard kissing spine as a muscular issue. Our therapy focusses on identifying and correcting back muscle imbalance or dysfunction causing intermittent contact of the dorsal spines. The rate of success is very high. The few cases which did not work, were conscious or subconscious resistance of the rider in evolving from a traditional seat placing the weight on the gluts, to a seat effectively in neutral balance over the seat bones. Deep seat saddles and swelled knee pads were in the way to efficient riding. Rehabilitating a horse through exercise therapy is as efficient for the equine as for humans. However, it is more difficult rehabilitating a horse than riding a horse in the show ring. If talented enough, a horse will perform well in spite of dysfunction. Once the dysfunction has created pathological damages, the rehabilitation does not tolerate any dysfunction. This is where the rider and the horse need a good seat and a saddle allowing a good seat. The science of motion’s perception of a good saddle is not a saddle fitting the horse standing still, but a saddle fitting the horse in motion.